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LEITER TO THE EDITOR 

Miura-type transformations 

C Sophocleous 
Department of  Mathematics, University of Nottingham, University Park, Nottingham 
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Abstnm. In this letter Miura-type transformations are considered for generalized KdV 

equations of the form ~ ~ + u ~ ~ ~ + f ( u .  u,)=O. The nonlinear forms of  this equation that 
admit such transformations are completely classified. For the same equations Bieklund 
transformations are derived. Finally we investigate a wider class of transformations. 

The Miura transformation [l]  U = U: - u ’ ~  relates the Korteweg-de h i e s  (Kdv) equation 
up + U,,, +6uu, = 0 and the modified Kdv equation U:+ U:, - 6 ~ ’ ~ u :  = 0. Miura’s result 
I s  analogous to the Hopf-Cole transformation of Burgers’ equation to the diffusion 
equation [ 2 ,  31, except that Miura’s is a transformation between two nonlinear 
equations, neither of which can be solved in general. Nevertheless, this transformation 
is the key to prove the existence of an infinite number of conservation laws for the 
Kdv equation [4]. i t  also provides the starting point for the inverse scattering method 
which provides exact solution for the same equation [4]. A generalization of the 
Hopf-Cole transformation is given by Sachdev [ 5 ] .  

We present a theorem which gives a class of Miura-type transformations for 
generalized Kdv equations. Motivated by this theorem, theorem 2 is introduced to give 
the Backlund transformations ( B T ~ )  which relate the same equations. Theorem 2 can 
be seen as  a generalization of Lamb’s result [6], who, also motivated by the Miura 
transformation, derived B T ~  connecting the Kdv and the modified Kdv equations. Finally, 
in the spirit of the work of Sophocleous and Kingston [7], who derived transformations 
of the class U = F(u’, U:, U:) for equations of the form uxy =f(u, ux), we explore the 
range of functionsf(u, U,) andf’(u‘, U:) for which the equations u.” + U,, +f( U, u.) = 0 
and U;+ uLx+f’(u‘, U:) = O  admit transformations of the class U = F(u’, 

Throughout we shall use the standard notation p,  q, r, s and f for U derivatives, 

, ,  I 
U:, u y ,  U,, 

similarly for U’ derivatives and LI’ = u z ,  , p’ = uiXy ,  y’ = U:,+ and 6’ = uhY.”. 

Theorem 1. The pair of partial differential equations 

3 U 
u;+uzx+&Lu;’-- 2 A 2  “ = +-U‘ A 2  x -  - 0  

are related by the transformation 

U = Au:+c 
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where c is a function of U' and is given by the ordinary differential equation 

c.,. .+pc = 7 e... . # 0 (4) 
where A, v, p, T, 6 and B are all constants, p=O, -1, 1 and 4, B are constants of 
integration. obtained by solving equation (4). These constants may be fixed without 
loss of generality. In particular by appropriate scaling of U and U' and writing equations 
(1) and (2) in a moving frame we may take A = 1 and Y = 0. Nevertheless, we have not 
fixed these constants, so one can easily deduce special cases of the theorem 1. 

Proof (outline). For p =0, -1, 1 we obtain from equations (3) and (4) that 

7 
U = ~ p ' + -  U"+ 6u'+ e (5) 2 
.._ , " , ~ ~ - ~ - h . . , ~ ~ - - - h . , , - -  IL\ 

\'J 1 U - Ay I y J 1 . l . L  U I " CVIl l  Y I 

u=Ap '+ds inu '+Bcosu '+ r  (7) 
respectively. For each of the separate forms (5)-(7), U,, uy and U,,, can be 
evaluated in terms of U' and its derivatives. Recalling that a'= 
-[q'+&p'' -3p'c:. /(2A2)+ vp' /A2] ,  from equation (2), these expressions for U>, U, 
and U,, will satisfy equation (1). 

We note that on setting p = 6 = 0 = 0, A = 1, 7 = -2, we obtain the transformation 
u = p ' - U "  which relates the Kdv equation q + a + 6 u p = O  and the modified Kdv 
equation 9 ' + 0 ' - 6 u ' p ' ~ = O .  This is the well known Miurd transformation. Also if we 
let p = 0 = 0, Y =$, T = -2A2, 6 = 1 we find that the equations q + a f 6 u p  = 0 and 
q ' + a ' - 6 ( A * ~ ' ~ - u ' ) p ' = O  are related by u=Ap'-A2u''+u'. The latter is known as 
Gardner's transformation [4]. Also when p = *I we obtain the well known relationship 
between the modified Kdv equation to an equation that was first introduced by Calogero 
and Degasperis [SI. 

Let us write equation (3) in the form 

(8) 
1 
A 

p ' = - ( U - c )  

and also let 

q ' = @ ( u ' . u , p .  r ) .  ( 9 )  

Considering (8) and (9) and taking p=O, -1, 1, separately, we can derive BTS for 
equations (1) and (2) using the method of Clairin [ 9 ] .  Without presenting the detailed 
compuiaiions we summarize ihe resuiis in i k  Coiiowiiig ibeoreiii. 

Theorem 2. The BTE 

1 
A 

p ' = -  (U - c )  

1 1  1 1 r2 1 ,  q " - - l + ~ p E u ~ - ~ p p ' 3 + -  c . . + - p  c..,.-- v 
A A  2h2" A A2 

relate the partial differential equations (1) and (2), where c is given by equation (4). 
The cons&& are as defined in theorem 1. 
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The proof is straightforward. Theorem 2 is a generalization of the BTS obtained by 
Lamb [61, which relate the Kdv and the modified Kdv equations. Choosing p = Y = r$ = 
0 = 0, A = 1 and T = -2 in the above theorem gives the result obtained by Lamb. Also 
setting p=-1, A'=;, A=-$(r$+fJ)2, B=-$(+B)' ,  D=-3(r$2-B2)  and v = O  
equation (2) becomes the Calogero and Degasperis equation 

q'+ a'-$p''+[A exp(2u')+B exp(-2u')+D]p'=O 

where, making the transformation U ' + @  this equation takes the same form as in [8]. 
The above equation is linked to the modified Kdv equation 

+ a  -6 [ (  U + ~ ) ~ - f D ] p  = 0 

by the BTS 

p'= *2(u - c )  

q '=  ~ 2 r ' + 4 p c . ~ + t p ' ~ + 2 p ' c : . * p ' ~ c ~ . ~ .  

where c = 4 sinh U'+  B cosh U'-  T. 

We consider the two partial differential equations 

4 + a +f(u, P) = 0 (10) 

q'+a'+f'(u', p')=O (11) 

U = F (  U', p', 4'. r', s', f'). (12) 

In the subsequent analysis we shall determine the range of functionsfandf' for which 
equations (10) and (11) admit transformations of the class (12). We shall exclude cases 
where both f and f' are linear in both of their arguments. Point transformations are 
also excluded. 

and 

and the transformations of the form 

Upon differentiating (12) with respect to x and y respectively, we obtain 

p = p'F.,+ r'F,.+ s'F,.+ a'F,.+ p'F,.+ y'F,. (13) 

q = q'F.,+s'F,,+ f'F,.+p'F,.+y'F++S'F,.. (14) 

Remembering that a'= - 4 ' - f ' ,  from ( l l ) ,  and differentiating (13) twice with respect 
to x a similar expression for a is obtained. Upon substitution of this expression for 
a and (14) into equation (10) we obtain 

(15) 

where E ' =  U&, for some function E which may be calculated explicitly in terms of 
F, its derivatives, f', its derivatives, U', p', q', r', s'. I ' ,  p',  y' and E ' .  In view of (10) E 
must be identically zero with U', p', q', r', s', f ' ,  p ' ,  y' and E' regarded as independent 
variables. 

The following calculations in which the detailed computations have been omitted, 
were performed with the assistance of the algebraic manipulation package REDUCE 

[lo]. The coefficient of E'  in (15) implies that F= A 5 f ' +  F,(u',p', 4'. r', s'), F,  being a 
function of the indicated arguments and A s  a constant. Upon differentiation (15) twice 
with respect to y' we obtain A:& = 0. Taking As # 0 leads to excluded (linear) forms 
o f f  and f'. Hence, one needs to take A s  = 0. Now the coefficient of I' implies that 

q +  a +f= E(u', p', q', r', s', f ' ,  p', y'. E ' )  = 0 

- 
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F( = Fl )  = A4s'+ F2(u', p'. q', r') and E,.,.= A:& = 0. This time we must take A, = 0 for 
non-excluded cases. Similarly, picking the coefficient of p' and then differentiating E 
twice with respect to s' we deduce that F is also independent of 4'. Hence, 

U = F( U', p', r'). 

The coefficient of s' implies that F =  A2r'+A(u' ,p ' ) ,  where A is a function of U' 
and p' and A, is a constant. Now E,.,. = A:& =O. Here A, # 0 does not lead to excluded 
cases. Therefore one needs to split the analysis into two disjoint cases: (i) A, # 0 and 
f is linear in p and (ii) A 2  = 0. 

(i) Calculations of E,., E,.,. and E,. lead to the following results 

F = A2r' -&4zp, p', + (1 (u')p'+ b( U') (16) 

f = bLIU+P2)P (17) 

(18) 
3 

2A2 
f ' =  -~A22p:p '3+fp ,ap '2+p ,bp '+pL2p '+-a~ .p '2  

where 

a = U, exp(-fA2p,u')+ u2 

and where p l ,  #2,  U,, u2,  U,, U, and us are all constants. The constant p,  has been 
taken as non-zero because otherwise both f and f '  are linear. 

Finally equating coefficients of powers of p' in E =0, we deduce that we must 
either have ( a )  U, = u3 = 0 or ( b )  U, # 0, U, = us = 0. These two subcases give all possible 
forms of F, f and f '  (equations (16)-(18)). As an example, if we set p , = 6  and 
p2= U, = u2 = u3 = U&= us= 0 we obtain the transformation U = A2r'- A:p"which relates 
the Kdv equation and the equation q'+ ol'-ZA"''= 0. 

(ii) Differentiating E firstly, with respect to q' and secondly, twice with respect to 
r' yields 

F = A I p' + E (  U') f = L ( u ) p + M ( u )  
respectively, where L and M are functions of U, c is a function of U' and A ,  is a 
constant. Because we exclude point transformations, A ,  # 0. Equating coefficients of 
powers of r' in E = 0 now gives 

(19)  A ,  L = A !  fL,- ~P'C. , . ,  
p 'c . .L+M = f'c..-p"c.,. , . ,+A,p'f:,.  (20) 

n . s e  !WD cqn-'ion: impese :es?ric!ions et! the f!L"CtlO!?S L, .e, s' *!Id c .Ed th.! 
ultimately enables the transformations to be derived. 

Without presenting any more detailed computations, we state the results of this 
case. If c....#O, then equations (19) and (20) lead to theorem 1. If c =  M ~ ' + T ,  one 
finds the following two trivial transformations: 

( a )  U = A,p'+  vu'+ T relates the equations q +  a + [ A ,  M'(  U )  + p ] p +  M (  U )  = 0 and 
q ' f a ' + [ M ( A , p ' + u u ' + r ) + p p ' ] / u = O ,  where M is an arbitrary function, M '  is its 
derived function, p, U and T are constants and U is non-zero. 

( b )  u = A I p ' + 7  relates the equations q + a + J ' ( ( u  - ~ ) / A ~ ) p + p u -  Tp=O and q'+ 
a ' + p u ' + J ( p ' )  =0, where J is an  arbitrary function, J' is its derived, p and r are 
constants. 
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2 ,3 . If we let p = 7 = 0 and J = -2A, p in the second transformation, we find that the 
modified Kdv equation and the equation q’+a ‘ -2A: j1 ‘~=0  are related by U = h i p ’ .  
Combining this transformation and the Miura transformation we obtain the transforma- 
tion which was given as example in case (i). 

Therefore theorem 1 and the transformations (a) and (b) provide the complete set 
of Miura-type transformations for the equations (10) and (1 1). Using these two trivial 
transformations ((a) and ( b ) )  we can also derive B T ~  for the same equations. 

I would like to thank Dr J G Kingston for his assistance with this letter. 
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